P

phabricator-mcp-server

Created Oct 19, 2025 by baba786

Language:

Python

Stars:

5

Forks:

1

README

Phabricator MCP Server

A Model Context Protocol (MCP) server implementation for interacting with Phabricator API. This server allows LLMs to interact with Phabricator through a standardized interface.

Overview

This project provides an MCP server that exposes Phabricator functionality through:

  • Task management (viewing, creating, updating tasks)
  • Project information
  • User details

Getting Started

Prerequisites

  • Python 3.8+
  • Phabricator API token (from your Phabricator instance)
  • Access to a Phabricator instance

Installation

  1. Clone this repository:

    git clone https://github.com/baba786/phabricator-mcp-server.git
    cd phabricator-mcp-server
  2. Create and activate a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Unix/MacOS
    # or
    .\venv\Scripts\activate  # On Windows
  3. Install dependencies:

    pip install -r requirements.txt
  4. Set up your environment:

    
    # Copy the example env file
    cp .env.example .env

Edit .env and add your Phabricator token

Replace 'your-token-here' with your actual Phabricator API token

echo "PHABRICATOR_TOKEN=your-token-here" > .env


5. Run the server:
```bash
cd src
python server.py

Usage

Currently supported commands:

  • get-task: Retrieve details of a specific Phabricator task

Example usage through the client:

from src.mcp_minimal_client import Client

client = Client()
response = client.get_task(task_id="123")  # Replace with actual task ID
print(response)

Development Status

🚧 This project is currently under development. Stay tuned for updates!

Last updated: Oct 19, 2025

Publisher info

baba786's avatar

baba786

Vibe coding

6
followers
8
following
18
repos

More MCP servers built with Python

Stable Diffusion WebUI

Stable Diffusion web UI

By AUTOMATIC1111 160.1K
Transformers

🤗 Transformers: the model-definition framework for state-of-the-art machine learning models in text, vision, audio, and multimodal models, for both inference and training.

By huggingface 155.5K
PyTorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

By pytorch 96.8K