phabricator-mcp-server
Language:
Python
Stars:
5
Forks:
1
Phabricator MCP Server
A Model Context Protocol (MCP) server implementation for interacting with Phabricator API. This server allows LLMs to interact with Phabricator through a standardized interface.
Overview
This project provides an MCP server that exposes Phabricator functionality through:
- Task management (viewing, creating, updating tasks)
- Project information
- User details
Getting Started
Prerequisites
- Python 3.8+
- Phabricator API token (from your Phabricator instance)
- Access to a Phabricator instance
Installation
- Clone this repository:
git clone https://github.com/baba786/phabricator-mcp-server.git
cd phabricator-mcp-server
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Unix/MacOS
# or
.\venv\Scripts\activate # On Windows
- Install dependencies:
pip install -r requirements.txt
- Set up your environment:
# Copy the example env file
cp .env.example .env
# Edit .env and add your Phabricator token
# Replace 'your-token-here' with your actual Phabricator API token
echo "PHABRICATOR_TOKEN=your-token-here" > .env
- Run the server:
cd src
python server.py
Usage
Currently supported commands:
get-task
: Retrieve details of a specific Phabricator task
Example usage through the client:
from src.mcp_minimal_client import Client
client = Client()
response = client.get_task(task_id="123") # Replace with actual task ID
print(response)
Development Status
🚧 This project is currently under development. Stay tuned for updates!
Publisher info
More MCP servers built with Python
Create, backtest, and execute trades directly in one chat box. The Composer MCP Server gives LLMs the power to backtest investment ideas and execute automated trading strategies. Trade across stocks, ETFs, and crypto directly in Claude.
An MCP to generate presentations with AI. Create and edit PowerPoint presentations with AI.
The PaddleOCR MCP server brings enterprise-grade OCR and document parsing capabilities to AI applications. Built on PaddleOCR — a proven solution with 50,000+ GitHub stars, deeply integrated by leading projects like MinerU, RAGFlow, and OmniParser— with targeted optimizations based on the MCP concept.