mcp-vegalite-server
Language:
Python
Stars:
51
Forks:
15
Data Visualization MCP Server
Overview
A Model Context Protocol (MCP) server implementation that provides the LLM an interface for visualizing data using Vega-Lite syntax.
Components
Tools
The server offers two core tools:
save_data
- Save a table of data agregations to the server for later visualization
- Input:
name
(string): Name of the data table to be saveddata
(array): Array of objects representing the data table
- Returns: success message
visualize_data
- Visualize a table of data using Vega-Lite syntax
- Input:
data_name
(string): Name of the data table to be visualizedvegalite_specification
(string): JSON string representing the Vega-Lite specification
- Returns: If the
--output_type
is set totext
, returns a success message with an additionalartifact
key containing the complete Vega-Lite specification with data. If the--output_type
is set topng
, returns a base64 encoded PNG image of the visualization using the MPCImageContent
container.
Usage with Claude Desktop
# Add the server to your claude_desktop_config.json
{
"mcpServers": {
"datavis": {
"command": "uv",
"args": [
"--directory",
"/absolute/path/to/mcp-datavis-server",
"run",
"mcp_server_datavis",
"--output_type",
"png" # or "text"
]
}
}
}
Publisher info
More MCP servers built with Python
Create, backtest, and execute trades directly in one chat box. The Composer MCP Server gives LLMs the power to backtest investment ideas and execute automated trading strategies. Trade across stocks, ETFs, and crypto directly in Claude.
An MCP to generate presentations with AI. Create and edit PowerPoint presentations with AI.
The PaddleOCR MCP server brings enterprise-grade OCR and document parsing capabilities to AI applications. Built on PaddleOCR — a proven solution with 50,000+ GitHub stars, deeply integrated by leading projects like MinerU, RAGFlow, and OmniParser— with targeted optimizations based on the MCP concept.