mcp-ortools
Language:
Python
Stars:
8
Forks:
1
MCP-ORTools
A Model Context Protocol (MCP) server implementation using Google OR-Tools for constraint solving. Designed for use with Large Language Models through standardized constraint model specification.
Overview
MCP-ORTools integrates Google's OR-Tools constraint programming solver with Large Language Models through the Model Context Protocol, enabling AI models to:
- Submit and validate constraint models
- Set model parameters
- Solve constraint satisfaction and optimization problems
- Retrieve and analyze solutions
Installation
- Install the package:
pip install git+https://github.com/Jacck/mcp-ortools.git
- Configure Claude Desktop
Create the configuration file at
%APPDATA%\Claude\claude_desktop_config.json
(Windows) or~/Library/Application Support/Claude/claude_desktop_config.json
(macOS):
{
"mcpServers": {
"ortools": {
"command": "python",
"args": ["-m", "mcp_ortools.server"]
}
}
}
Model Specification
Models are specified in JSON format with three main sections:
variables
: Define variables and their domainsconstraints
: List of constraints using OR-Tools methodsobjective
: Optional optimization objective
Constraint Syntax
Constraints must use OR-Tools method syntax:
.__le__()
for less than or equal (=).__eq__()
for equality (==).__ne__()
for not equal (!=)
Usage Examples
Simple Optimization Model
{
"variables": [
{"name": "x", "domain": [0, 10]},
{"name": "y", "domain": [0, 10]}
],
"constraints": [
"(x + y).__le__(15)",
"x.__ge__(2 * y)"
],
"objective": {
"expression": "40 * x + 100 * y",
"maximize": true
}
}
Knapsack Problem
Example: Select items with values [3,1,2,1] and weights [2,2,1,1] with total weight limit of 2.
{
"variables": [
{"name": "p0", "domain": [0, 1]},
{"name": "p1", "domain": [0, 1]},
{"name": "p2", "domain": [0, 1]},
{"name": "p3", "domain": [0, 1]}
],
"constraints": [
"(2*p0 + 2*p1 + p2 + p3).__le__(2)"
],
"objective": {
"expression": "3*p0 + p1 + 2*p2 + p3",
"maximize": true
}
}
Additional constraints example:
{
"constraints": [
"p0.__eq__(1)", // Item p0 must be selected
"p1.__ne__(p2)", // Can't select both p1 and p2
"(p2 + p3).__ge__(1)" // Must select at least one of p2 or p3
]
}
Features
- Full OR-Tools CP-SAT solver support
- JSON-based model specification
- Support for:
- Integer and boolean variables (domain: [min, max])
- Linear constraints using OR-Tools method syntax
- Linear optimization objectives
- Timeouts and solver parameters
- Binary constraints and relationships
- Portfolio selection problems
- Knapsack problems
Supported Operations in Constraints
- Basic arithmetic: +, -, *
- Comparisons: .le(), .ge(), .eq(), .ne()
- Linear combinations of variables
- Binary logic through combinations of constraints
Development
To setup for development:
git clone https://github.com/Jacck/mcp-ortools.git
cd mcp-ortools
pip install -e .
Model Response Format
The solver returns solutions in JSON format:
{
"status": "OPTIMAL",
"solve_time": 0.045,
"variables": {
"p0": 0,
"p1": 0,
"p2": 1,
"p3": 1
},
"objective_value": 3.0
}
Status values:
- OPTIMAL: Found optimal solution
- FEASIBLE: Found feasible solution
- INFEASIBLE: No solution exists
- UNKNOWN: Could not determine solution
License
MIT License - see LICENSE file for details
Publisher info
More MCP servers built with Python
MCP server that exposes the Apollo.io API functionalities as tools
Enables IDEs like Cursor and Windsurf to analyze large codebases using Gemini's extensive context window.