mcp-logic
Categories
Language:
Python
Stars:
20
Forks:
4
MCP-Logic
An MCP server providing automated reasoning capabilities using Prover9/Mace4 for AI systems. This server enables logical theorem proving and logical model verification through a clean MCP interface.
Design Philosophy
MCP-Logic bridges the gap between AI systems and formal logic by providing a robust interface to Prover9/Mace4. What makes it special:
- AI-First Design: Built specifically for AI systems to perform automated reasoning
- Knowledge Validation: Enables formal verification of knowledge representations and logical implications
- Clean Integration: Seamless integration with the Model Context Protocol (MCP) ecosystem
- Deep Reasoning: Support for complex logical proofs with nested quantifiers and multiple premises
- Real-World Applications: Particularly useful for validating AI knowledge models and reasoning chains
Features
- Seamless integration with Prover9 for automated theorem proving
- Support for complex logical formulas and proofs
- Built-in syntax validation
- Clean MCP server interface
- Extensive error handling and logging
- Support for knowledge representation and reasoning about AI systems
Quick Example
# Prove that understanding + context leads to application
result = await prove(
premises=[
"all x all y (understands(x,y) -> can_explain(x,y))",
"all x all y (can_explain(x,y) -> knows(x,y))",
"all x all y (knows(x,y) -> believes(x,y))",
"all x all y (believes(x,y) -> can_reason_about(x,y))",
"all x all y (can_reason_about(x,y) & knows_context(x,y) -> can_apply(x,y))",
"understands(system,domain)",
"knows_context(system,domain)"
],
conclusion="can_apply(system,domain)"
)
# Returns successful proof!
{'result': 'proved', 'proof': '', 'complete_output': '============================== Prover9 ===============================\nProver9 (32) version Dec-2007, Dec 2007.\nProcess 27928 was started by angry on Ty,\nMon Jan 13 16:10:57 2025\nThe command was "/cygdrive/f/Prover9-Mace4/bin-win32/prover9 -f C:\\Users\\angry\\AppData\\Local\\Temp\\tmp05_k_2ak.in".\n============================== end of head ===========================\n\n============================== INPUT =================================\n\n% Reading from file C:\\Users\\angry\\AppData\\Local\\Temp\\tmp05_k_2ak.in\n\n\nformulas(assumptions).\n(all x all y (understands(x,y) -> can_explain(x,y))).\n(all x all y (can_explain(x,y) -> knows(x,y))).\n(all x all y (knows(x,y) -> believes(x,y))).\n(all x all y (believes(x,y) -> can_reason_about(x,y))).\n(all x all y (can_reason_about(x,y) & knows_context(x,y) -> can_apply(x,y))).\nunderstands(system,domain).\nknows_context(system,domain).\nend_of_list.\n\nformulas(goals).\ncan_apply(system,domain).\nend_of_list.\n\n============================== end of input ==========================\n\n============================== PROCESS NON-CLAUSAL FORMULAS ==========\n\n% Formulas that are not ordinary clauses:\n1 (all x all y (understands(x,y) -> can_explain(x,y))) # label(non_clause). [assumption].\n2 (all x all y (can_explain(x,y) -> knows(x,y))) # label(non_clause). [assumption].\n3 (all x all y (knows(x,y) -> believes(x,y))) # label(non_clause). [assumption].\n4 (all x all y (believes(x,y) -> can_reason_about(x,y))) # label(non_clause). [assumption].\n5 (all x all y (can_reason_about(x,y) & knows_context(x,y) -> can_apply(x,y))) # label(non_clause). [assumption].\n6 can_apply(system,domain) # label(non_clause) # label(goal). [goal].\n\n============================== end of process non-clausal formulas ===\n\n============================== PROCESS INITIAL CLAUSES ===============\n\n% Clauses before input processing:\n\nformulas(usable).\nend_of_list.\n\nformulas(
sos).\n-understands(x,y) | can_explain(x,y). [clausify(1)].\n-can_explain(x,y) | knows(x,y). [clausify(2)].\n-knows(x,y) | believes(x,y). [clausify(3)].\n-believes(x,y) | can_reason_about(x,y). [clausify(4)].\n-can_reason_about(x,y) | -knows_context(x,y) | can_apply(x,y). [clausify(5)].\nunderstands(system,domain). [assumption].\nknows_context(system,domain). [assumption].\n-can_apply(system,domain). [deny(6)].\nend_of_list.\n\nformulas(demodulators).\nend_of_list.\n\n============================== PREDICATE ELIMINATION =================\n\nEliminating understands/2\n7 understands(system,domain). [assumption].\n8 -understands(x,y) | can_explain(x,y). [clausify(1)].\nDerived: can_explain(system,domain). [resolve(7,a,8,a)].\n\nEliminating can_explain/2\n9 can_explain(system,domain). [resolve(7,a,8,a)].\n10 -can_explain(x,y) | knows(x,y). [clausify(2)].\nDerived: knows(system,domain). [resolve(9,a,10,a)].\n\nEliminating knows/2\n11 knows(system,domain). [resolve(9,a,10,a)].\n12 -knows(x,y) | believes(x,y). [clausify(3)].\nDerived: believes(system,domain). [resolve(11,a,12,a)].\n\nEliminating believes/2\n13 believes(system,domain). [resolve(11,a,12,a)].\n14 -believes(x,y) | can_reason_about(x,y). [clausify(4)].\nDerived: can_reason_about(system,domain). [resolve(13,a,14,a)].\n\nEliminating can_reason_about/2\n15 can_reason_about(system,domain). [resolve(13,a,14,a)].\n16 -can_reason_about(x,y) | -knows_context(x,y) | can_apply(x,y). [clausify(5)].\nDerived: -knows_context(system,domain) | can_apply(system,domain). [resolve(15,a,16,a)].\n\nEliminating knows_context/2\n17 -knows_context(system,domain) | can_apply(system,domain). [resolve(15,a,16,a)].\n18 knows_context(system,domain). [assumption].\nDerived: can_apply(system,domain). [resolve(17,a,18,a)].\n\nEliminating can_apply/2\n19 can_apply(system,domain). [resolve(17,a,18,a)].\n20 -can_apply(system,domain). [deny(6)].\nDerived: $F. [resolve(19,a,20,a)].\n\n============================== en
d predicate elimination =============\n\nAuto_denials: (no changes).\n\nTerm ordering decisions:\nPredicate symbol precedence: predicate_order([ ]).\nFunction symbol precedence: function_order([ ]).\nAfter inverse_order: (no changes).\nUnfolding symbols: (none).\n\nAuto_inference settings:\n % set(neg_binary_resolution). % (HNE depth_diff=0)\n % clear(ordered_res). % (HNE depth_diff=0)\n % set(ur_resolution). % (HNE depth_diff=0)\n % set(ur_resolution) -> set(pos_ur_resolution).\n % set(ur_resolution) -> set(neg_ur_resolution).\n\nAuto_process settings: (no changes).\n\n============================== PROOF =================================\n\n% Proof 1 at 0.00 (+ 0.00) seconds.\n% Length of proof is 21.\n% Level of proof is 8.\n% Maximum clause weight is 0.\n% Given clauses 0.\n\n1 (all x all y (understands(x,y) -> can_explain(x,y))) # label(non_clause). [assumption].\n2 (all x all y (can_explain(x,y) -> knows(x,y))) # label(non_clause). [assumption].\n3 (all x all y (knows(x,y) -> believes(x,y))) # label(non_clause). [assumption].\n4 (all x all y (believes(x,y) -> can_reason_about(x,y))) # label(non_clause). [assumption].\n5 (all x all y (can_reason_about(x,y) & knows_context(x,y) -> can_apply(x,y))) # label(non_clause). [assumption].\n6 can_apply(system,domain) # label(non_clause) # label(goal). [goal].\n7 understands(system,domain). [assumption].\n8 -understands(x,y) | can_explain(x,y). [clausify(1)].\n9 can_explain(system,domain). [resolve(7,a,8,a)].\n10 -can_explain(x,y) | knows(x,y). [clausify(2)].\n11 knows(system,domain). [resolve(9,a,10,a)].\n12 -knows(x,y) | believes(x,y). [clausify(3)].\n13 believes(system,domain). [resolve(11,a,12,a)].\n14 -believes(x,y) | can_reason_about(x,y). [clausify(4)].\n15 can_reason_about(system,domain). [resolve(13,a,14,a)].\n16 -can_reason_about(x,y) | -knows_context(x,y) | can_apply(x,y). [clausify(5)].\n17 -knows_context(system,domain) | can_apply(system,domain). [resolve(15,a,16,a)].\n18 kn
ows_context(system,domain). [assumption].\n19 can_apply(system,domain). [resolve(17,a,18,a)].\n20 -can_apply(system,domain). [deny(6)].\n21 $F. [resolve(19,a,20,a)].\n\n============================== end of proof ==========================\n\n============================== STATISTICS ============================\n\nGiven=0. Generated=1. Kept=0. proofs=1.\nUsable=0. Sos=0. Demods=0. Limbo=0, Disabled=15. Hints=0.\nWeight_deleted=0. Literals_deleted=0.\nForward_subsumed=0. Back_subsumed=0.\nSos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.\nNew_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.\nDemod_attempts=0. Demod_rewrites=0.\nRes_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.\nNonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.\nMegabytes=0.02.\nUser_CPU=0.00, System_CPU=0.00, Wall_clock=0.\n\n============================== end of statistics =====================\n\n============================== end of search =========================\n\nTHEOREM PROVED\n\nExiting with 1 proof.\n\nProcess 27928 exit (max_proofs) Mon Jan 13 16:10:57 2025\n'}
Installation
Prerequisites
- Python 3.12+
- UV package manager
- Download Prover9/Mace4 with the given fixes for your platform (from )
Setup
- Install Prover9/Mace4 to a known location (e.g.,
F:/Prover9-Mace4/
) - Clone this repository
- Install dependencies:
uv venv
uv pip install -e .
Configuration
Add to your MCP environment configuration:
{
"mcpServers": {
"mcp-logic": {
"command": "uv",
"args": [
"--directory",
"path/to/mcp-logic/src/mcp_logic",
"run",
"mcp_logic",
"--prover-path",
"path/to/Prover9-Mace4/bin-win32"
]
}
}
}
Available Tools
prove
Run logical proofs using Prover9:
{
"tool": "prove",
"arguments": {
"premises": [
"all x (man(x) -> mortal(x))",
"man(socrates)"
],
"conclusion": "mortal(socrates)"
}
}
check-well-formed
Validate logical statement syntax:
{
"tool": "check-well-formed",
"arguments": {
"statements": [
"all x (man(x) -> mortal(x))",
"man(socrates)"
]
}
}
Documentation
See the Documents folder for detailed analysis and examples:
- Knowledge to Application: A formal logical analysis of understanding and practical application in AI systems
Project Structure
mcp-logic/
├── src/
│ └── mcp_logic/
│ └── server.py # Main MCP server implementation
├── tests/
│ ├── test_proofs.py # Core functionality tests
│ └── test_debug.py # Debug utilities
├── Documents/ # Analysis and documentation
├── pyproject.toml # Python package config
└── README.md # This file
Development
Run tests:
uv pip install pytest
uv run pytest
License
MIT
Publisher info
More MCP servers built with Python
Bridge the gap between your web crawler and AI language models using Model Context Protocol (MCP). With mcp-server-webcrawl, your AI client filters and analyzes web content under your direction or autonomously, extracting insights from your web content. Support for WARC, wget, InterroBot, Katana, and SiteOne crawlers is available out of the gate. The server includes a full-text search interface with boolean support, resource filtering by type, HTTP status, and more.
Armor Model Context Protocol (MCP) gives developers full access to the blockchain functionality of Armor Wallet. This includes cross-chain swaps, token data, bridging, wallet management, limit orders, staking, and many other features. With the Armor MCP, developers can integrate a complete suite of crypto tools available to their AI Agents quickly and easily for fast, reliable AI Agent development.