earthdata-mcp-server
Categories
Language:
Python
Stars:
8
Forks:
2
🪐 ✨ Earthdata MCP Server
Earthdata MCP Server is a Model Context Protocol (MCP) server implementation that provides tools to interact with NASA Earth Data. It enables efficient dataset discovery and retrieval for Geospatial analysis.
Analyzing Sea Level Rise with AI-Powered Geospatial Tools and Jupyter - Watch Video
Usage with Claude Desktop
To use this with Claude Desktop, add the following to your claude_desktop_config.json:
{
"mcpServers": {
"earthdata": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"datalayer/earthdata-mcp-server:latest"
]
}
}
}
Components
Tools
The server currently offers 2 tools:
search_earth_datasets
- Search for datasets on NASA Earthdata.
- Input:
-
search_keywords (str): Keywords to search for in the dataset titles.
-
count (int): Number of datasets to return.
- temporal (tuple): (Optional) Temporal range in the format (date_from, date_to).
-
bounding_box (tuple): (Optional) Bounding box in the format (lower_left_lon, lower_left_lat, upper_right_lon, upper_right_lat).
-
- Returns: List of dataset abstracts.
search_earth_datagranules
- Search for data granules on NASA Earthdata.
- Input:
- short_name (str): Short name of the dataset.
- count (int): Number of data granules to return.
- temporal (tuple): (Optional) Temporal range in the format (date_from, date_to).
- bounding_box (tuple): (Optional) Bounding box in the format (lower_left_lon, lower_left_lat, upper_right_lon, upper_right_lat).
- Returns: List of data granules.
Building from Source
docker build -t datalayer/earthdata-mcp-server .
Publisher info
Datalayer
✨ 🪐 Agentic Jupyter
More MCP servers built with Python
Create, backtest, and execute trades directly in one chat box. The Composer MCP Server gives LLMs the power to backtest investment ideas and execute automated trading strategies. Trade across stocks, ETFs, and crypto directly in Claude.
An MCP to generate presentations with AI. Create and edit PowerPoint presentations with AI.
The PaddleOCR MCP server brings enterprise-grade OCR and document parsing capabilities to AI applications. Built on PaddleOCR — a proven solution with 50,000+ GitHub stars, deeply integrated by leading projects like MinerU, RAGFlow, and OmniParser— with targeted optimizations based on the MCP concept.