jupyter-mcp-server
Categories
Language:
Python
Stars:
141
Forks:
34
🪐 ✨ Jupyter MCP Server
Jupyter MCP Server is a Model Context Protocol (MCP) server implementation that provides interaction with Jupyter notebooks 📓 running in a local JupyterLab 💻.
Start JupyterLab
Make sure you have the following installed. The modifications made on the notebook can be seen thanks to Jupyter Real Time Collaboration (RTC).
pip install jupyterlab jupyter-collaboration ipykernel
Then, start JupyterLab with the following command:
jupyter lab --port 8888 --IdentityProvider.token MY_TOKEN --ip 0.0.0.0
[!NOTE] The
--ip
is set to0.0.0.0
to allow the MCP server running in a Docker container to access your local JupyterLab.
Usage with Claude Desktop
To use this with Claude Desktop, add the following to your claude_desktop_config.json:
[!IMPORTANT] Ensure the port of the
SERVER_URL
andTOKEN
match those used in thejupyter lab
command. TheNOTEBOOK_PATH
should be relative to the directory where JupyterLab was started.
### MacOS and Windows
{
"mcpServers": {
"jupyter": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"SERVER_URL",
"-e",
"TOKEN",
"-e",
"NOTEBOOK_PATH",
"datalayer/jupyter-mcp-server:latest"
],
"env": {
"SERVER_URL": "http://host.docker.internal:8888",
"TOKEN": "MY_TOKEN",
"NOTEBOOK_PATH": "notebook.ipynb"
}
}
}
}
Linux
{
"mcpServers": {
"jupyter": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"SERVER_URL",
"-e",
"TOKEN",
"-e",
"NOTEBOOK_PATH",
"--network=host",
"datalayer/jupyter-mcp-server:latest"
],
"env": {
"SERVER_URL": "http://localhost:8888",
"TOKEN": "MY_TOKEN",
"NOTEBOOK_PATH": "notebook.ipynb"
}
}
}
}
Components
Tools
The server currently offers 3 tools:
add_execute_code_cell
- Add and execute a code cell in a Jupyter notebook.
- Input:
cell_content
(string): Code to be executed.
- Returns: Cell output.
add_markdown_cell
- Add a markdown cell in a Jupyter notebook.
- Input:
cell_content
(string): Markdown content.
- Returns: Success message.
-
download_earth_data_granules
⚠️ We plan to migrate this tool to a separate repository in the future as it is specific to Geospatial analysis.
- Add a code cell in a Jupyter notebook to download Earth data granules from NASA Earth Data.
- Input:
-
folder_name
(string): Local folder name to save the data. -
short_name
(string): Short name of the Earth dataset to download. -
count
(int): Number of data granules to download. -
temporal
(tuple): (Optional) Temporal range in the format (date_from, date_to).- `bounding_box` (tuple): (Optional) Bounding box in the format (lower_left_lon, lower_left_lat, upper_right_lon, upper_right_lat).
-
- Returns: Cell output.
Building
docker build -t datalayer/jupyter-mcp-server .
Installing via Smithery
To install Jupyter MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @datalayer/jupyter-mcp-server --client claude
Publisher info
Datalayer
✨ 🪐 Agentic Jupyter
More MCP servers built with Python
MCP server that exposes the Apollo.io API functionalities as tools
Enables IDEs like Cursor and Windsurf to analyze large codebases using Gemini's extensive context window.