P

linkedin-mcp

Created Oct 19, 2025 by Hritik003

Language:

Python

Stars:

9

Forks:

2

README

MCP Server for LinkedIn

A Model Context Protocol (MCP) server for linkedin to apply Jobs and search through feed seamlessly.

This uses Unoffical Linkedin API Docs for hitting at the clients Credentials.

Features

  1. Profile Retrieval

    Fetch user profiles using get_profile() function Extract key information such as name, headline, and current position

  2. Job Search

  • Advanced job search functionality with multiple parameters:
    • Keywords
    • Location
    • Experience level
    • Job type (Full-time, Contract, Part-time)
    • Remote work options
    • Date posted
    • Required skills
  • Customizable search limit
  1. Feed Posts
  • Retrieve LinkedIn feed posts using get_feed_posts()
  • Configurable limit and offset for pagination
  1. Resume Analysis
  • Parse and extract information from resumes (PDF format)
  • Extracted data includes:
    • Name
    • Email
    • Phone number
    • Skills
    • Work experience
    • Education
    • Languages

Configuration

After cloning the repo, adjust the `` accordingly

{
    "linkedin":{
        "command":"uv",
        "args": [
            "--directory",
            "",
            "run",
            "linkedin.py"
        ]
    }   
}     

Usage

I have been testing using MCP-client and found as the best one for testing your MCP-Servers.

Last updated: Oct 19, 2025

Publisher info

Hritik003's avatar

Hritik003

ECE undergrad at BITS Pilani Hyderabad|| Final Yearite || Data Science || LLMs ||Java,C++ - CC || Git || Web-Dev||

BITS Pilani Hyderabad.
Bangalore
21
followers
40
following
70
repos

More MCP servers built with Python

Stable Diffusion WebUI

Stable Diffusion web UI

By AUTOMATIC1111 160.1K
Transformers

🤗 Transformers: the model-definition framework for state-of-the-art machine learning models in text, vision, audio, and multimodal models, for both inference and training.

By huggingface 155.5K
PyTorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

By pytorch 96.8K