P

nuanced-mcp

...
Created 3/6/2025byMattMorgis

Language:

Python

Stars:

8

Forks:

3

Nuanced MCP Server

A Model Context Protocol (MCP) server that provides call graph analysis capabilities to LLMs through the nuanced library.

Overview

This MCP server enables LLMs to understand code structure by accessing function call graphs through standardized tools and resources. It allows AI assistants to:

  • Initialize call graphs for Python repos
  • Explore function call relationships
  • Analyze dependencies between functions
  • Provide more contextually aware code assistance

API

Tools

  • initialize_graph

    • Initialize a code graph for the given repository path
    • Input: repo_path (string)
  • switch_repository

    • Switch to a different initialized repository
    • Input: repo_path (string)
  • list_repositories

    • List all initialized repositories
    • No inputs required
  • get_function_call_graph

    • Get the call graph for a specific function
    • Inputs:
      • file_path (string)
      • function_name (string)
      • repo_path (string, optional) - uses active repository if not specified
  • analyze_dependencies

    • Find all module or file dependencies in the codebase
    • Inputs (at least one required):
      • file_path (string, optional)
      • module_name (string, optional)
  • analyze_change_impact

    • Analyze the impact of changing a specific function
    • Inputs:
      • file_path (string)
      • function_name (string)

Resources

  • graph://summary

    • Get a summary of the currently loaded code graph
    • No parameters required
  • graph://repo/{repo_path}/summary

    • Get a summary of a specific repository's code graph
    • Parameters:
      • repo_path (string) - Path to the repository
  • graph://function/{file_path}/{function_name}

    • Get detailed information about a specific function
    • Parameters:
      • file_path (string) - Path to the file containing the function

                  - `function_name` (string) - Name of the function to analyze
        

Prompts

  • analyze_function

    • Create a prompt to analyze a function with its call graph
    • Parameters:
      • file_path (string) - Path to the file containing the function
      • function_name (string) - Name of the function to analyze
  • impact_analysis

    • Create a prompt to analyze the impact of changing a function
    • Parameters:
      • file_path (string) - Path to the file containing the function
      • function_name (string) - Name of the function to analyze
  • analyze_dependencies_prompt

    • Create a prompt to analyze dependencies of a file or module
    • Parameters (at least one required):
      • file_path (string, optional) - Path to the file to analyze
      • module_name (string, optional) - Name of the module to analyze

Usage with Claude Desktop

Add this to your claude_desktop_config.json

UV

{
  "mcpServers": {
    "nuanced": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/nuanced-mcp",
        "run",
        "nuanced_mcp_server.py"
      ]
    }
  }
}
Last updated: 3/25/2025

Publisher info

MattMorgis's avatar

Matt Morgis

Philadelphia
19
followers
57
following
60
repos

More MCP servers built with Python

mcp-atlassian

MCP server for Atlassian tools (Confluence, Jira)

By sooperset3200
https://github.com/fastnai/mcp-fastn

Unified Context Layer (UCL) is a multi-tenant Model Context Protocol (MCP) server that enables AI agents, automation platforms, and applications to connect to over 1,000 SaaS tools—such as Slack, Jira, Gmail, Shopify, Notion, and more—via a single standardized /command endpoint.

By Fastn
Web-To-MCP

Bridge the gap between design and code. Send pixel-perfect website components directly to Cursor or Claude Code using Model Context Protocol (MCP). No more screenshots or descriptions needed.

By Web-To-MCP