P

docker-mcp

Created Oct 19, 2025 by QuantGeekDev

Language:

Python

Stars:

218

Forks:

25

README

🐳 docker-mcp

Python 3.12 License: MIT Code style: black smithery badge

A powerful Model Context Protocol (MCP) server for Docker operations, enabling seamless container and compose stack management through Claude AI.

✨ Features

  • 🚀 Container creation and instantiation
  • 📦 Docker Compose stack deployment
  • 🔍 Container logs retrieval
  • 📊 Container listing and status monitoring

🎬 Demos

Deploying a Docker Compose Stack

https://github.com/user-attachments/assets/b5f6e40a-542b-4a39-ba12-7fdf803ee278

Analyzing Container Logs

https://github.com/user-attachments/assets/da386eea-2fab-4835-82ae-896de955d934

🚀 Quickstart

To try this in Claude Desktop app, add this to your claude config files:

{
  "mcpServers": {
    "docker-mcp": {
      "command": "uvx",
      "args": [
        "docker-mcp"
      ]
    }
  }
}

Installing via Smithery

To install Docker MCP for Claude Desktop automatically via Smithery:

npx @smithery/cli install docker-mcp --client claude

Prerequisites

  • UV (package manager)
  • Python 3.12+
  • Docker Desktop or Docker Engine
  • Claude Desktop

Installation

Claude Desktop Configuration

Add the server configuration to your Claude Desktop config file:

MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json

💻 Development Configuration

{
  "mcpServers": {
    "docker-mcp": {
      "command": "uv",
      "args": [
        "--directory",
        "",
        "run",
        "docker-mcp"
      ]
    }
  }
}

🚀 Production Configuration

{
  "mcpServers": {
    "docker-mcp": {
      "command": "uvx",
      "args": [
        "docker-mcp"
      ]
    }
  }
}

🛠️ Development

Local Setup

  1. Clone the repository:

    git clone https://github.com/QuantGeekDev/docker-mcp.git
    cd docker-mcp
  2. Create and activate a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies:

    uv sync

🔍 Debugging

Launch the MCP Inspector for debugging:

npx @modelcontextprotocol/inspector uv --directory  run docker-mcp

The Inspector will provide a URL to access the debugging interface.

📝 Available Tools

The server provides the following tools:

create-container

Creates a standalone Docker container

{
    "image": "image-name",
    "name": "container-name",
    "ports": {"80": "80"},
    "environment": {"ENV_VAR": "value"}
}

deploy-compose

Deploys a Docker Compose stack

{
    "project_name": "example-stack",
    "compose_yaml": "version: '3.8'\nservices:\n  service1:\n    image: image1:latest\n    ports:\n      - '8080:80'"
}

get-logs

Retrieves logs from a specific container

{
    "container_name": "my-container"
}

list-containers

Lists all Docker containers

{}

🚧 Current Limitations

  • No built-in environment variable support for containers
  • No volume management
  • No network management
  • No container health checks
  • No container restart policies
  • No container resource limits

🤝 Contributing

  1. Fork the repository from docker-mcp
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Open a Pull Request

📜 License

This project is licensed under the MIT License - see the LICENSE file for details.

✨ Authors

  • Alex Andru - Initial work | Core contributor - @QuantGeekDev
  • Ali Sadykov - Initial work | Core contributor - @md-archive

Made with ❤️

Last updated: Oct 19, 2025

Publisher info

QuantGeekDev's avatar

QuantGeekDev

Dude with a pc from Barcelona

@impulsum
Barcelona
141
followers
172
following
68
repos

More MCP servers built with Python

Stable Diffusion WebUI

Stable Diffusion web UI

By AUTOMATIC1111 160.1K
Transformers

🤗 Transformers: the model-definition framework for state-of-the-art machine learning models in text, vision, audio, and multimodal models, for both inference and training.

By huggingface 155.5K
PyTorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

By pytorch 96.8K