mcp-perplexity-search
Categories
Language:
JavaScript
Stars:
8
Forks:
3
mcp-perplexity-search
A Model Context Protocol (MCP) server for integrating Perplexity's AI API with LLMs. This server provides advanced chat completion capabilities with specialized prompt templates for various use cases.
Features
- 🤖 Advanced chat completion using Perplexity's AI models
- 📝 Predefined prompt templates for common scenarios:
- Technical documentation generation
- Security best practices analysis
- Code review and improvements
- API documentation in structured format
- 🎯 Custom template support for specialized use cases
- 📊 Multiple output formats (text, markdown, JSON)
- 🔍 Optional source URL inclusion in responses
- ⚙️ Configurable model parameters (temperature, max tokens)
- 🚀 Support for various Perplexity models including Sonar and LLaMA
Configuration
This server requires configuration through your MCP client. Here are examples for different environments:
Cline Configuration
Add this to your Cline MCP settings:
{
"mcpServers": {
"mcp-perplexity-search": {
"command": "npx",
"args": ["-y", "mcp-perplexity-search"],
"env": {
"PERPLEXITY_API_KEY": "your-perplexity-api-key"
}
}
}
}
Claude Desktop with WSL Configuration
For WSL environments, add this to your Claude Desktop configuration:
{
"mcpServers": {
"mcp-perplexity-search": {
"command": "wsl.exe",
"args": [
"bash",
"-c",
"source ~/.nvm/nvm.sh && PERPLEXITY_API_KEY=your-perplexity-api-key /home/username/.nvm/versions/node/v20.12.1/bin/npx mcp-perplexity-search"
]
}
}
}
Environment Variables
The server requires the following environment variable:
PERPLEXITY_API_KEY
: Your Perplexity API key (required)
API
The server implements a single MCP tool with configurable parameters:
chat_completion
Generate chat completions using the Perplexity API with support for
specialized prompt templates.
Parameters:
messages
(array, required): Array of message objects with:role
(string): 'system', 'user', or 'assistant'content
(string): The message content
prompt_template
(string, optional): Predefined template to use:technical_docs
: Technical documentation with code examplessecurity_practices
: Security implementation guidelinescode_review
: Code analysis and improvementsapi_docs
: API documentation in JSON format
custom_template
(object, optional): Custom prompt template with:system
(string): System message for assistant behaviourformat
(string): Output format preferenceinclude_sources
(boolean): Whether to include sources
format
(string, optional): 'text', 'markdown', or 'json' (default: 'text')include_sources
(boolean, optional): Include source URLs (default: false)model
(string, optional): Perplexity model to use (default: 'sonar')temperature
(number, optional): Output randomness (0-1, default: 0.7)max_tokens
(number, optional): Maximum response length (default: 1024)
Development
Setup
- Clone the repository
- Install dependencies:
pnpm install
- Build the project:
pnpm build
- Run in development mode:
pnpm dev
Publishing
The project uses changesets for version management. To publish:
- Create a changeset:
pnpm changeset
- Version the package:
pnpm changeset version
- Publish to npm:
pnpm release
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
MIT License - see the LICENSE file for details.
Acknowledgments
- Built on the Model Context Protocol
- Powered by Perplexity SONAR
Publisher info
Scott Spence
I've never Svelte like this before!
More MCP servers built with JavaScript
MCP Server Semgrep is a [Model Context Protocol](https://modelcontextprotocol.io) compliant server that integrates the powerful Semgrep static analysis tool with AI assistants like Anthropic Claude. It enables advanced code analysis, security vulnerability detection, and code quality improvements directly through a conversational interface.
This MCP server provides email sending functionality using Protonmail's SMTP service. It allows both Claude Desktop and Cline VSCode extension to send emails on your behalf using your Protonmail credentials.
Model Context Protocol server that integrates AgentQL's data extraction capabilities.